Analysis of U.S. freight-train derailment severity using zero-truncated negative binomial regression and quantile regression.

نویسندگان

  • Xiang Liu
  • M Rapik Saat
  • Xiao Qin
  • Christopher P L Barkan
چکیده

Derailments are the most common type of freight-train accidents in the United States. Derailments cause damage to infrastructure and rolling stock, disrupt services, and may cause casualties and harm the environment. Accordingly, derailment analysis and prevention has long been a high priority in the rail industry and government. Despite the low probability of a train derailment, the potential for severe consequences justify the need to better understand the factors influencing train derailment severity. In this paper, a zero-truncated negative binomial (ZTNB) regression model is developed to estimate the conditional mean of train derailment severity. Recognizing that the mean is not the only statistic describing data distribution, a quantile regression (QR) model is also developed to estimate derailment severity at different quantiles. The two regression models together provide a better understanding of train derailment severity distribution. Results of this work can be used to estimate train derailment severity under various operational conditions and by different accident causes. This research is intended to provide insights regarding development of cost-efficient train safety policies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Freight-train derailment rates for railroad safety and risk analysis.

Derailments are the most common type of train accident in the United States. They cause damage to infrastructure, rolling stock and lading, disrupt service, and have the potential to cause casualties, and harm the environment. Train safety and risk analysis relies on accurate assessment of derailment likelihood. Derailment rate - the number of derailments normalized by traffic exposure - is a u...

متن کامل

Hurdle, Inflated Poisson and Inflated Negative Binomial Regression Models ‎ for Analysis of Count Data with Extra Zeros

In this paper‎, ‎we ‎propose ‎Hurdle regression models for analysing count responses with extra zeros‎. A method of estimating maximum likelihood is used to estimate model parameters. The application of the proposed model is presented in insurance dataset‎. In this example‎, there are many numbers of claims equal to zero is considered that clarify the application of the model with a zero-inflat...

متن کامل

Estimation of Count Data using Bivariate Negative Binomial Regression Models

Abstract Negative binomial regression model (NBR) is a popular approach for modeling overdispersed count data with covariates. Several parameterizations have been performed for NBR, and the two well-known models, negative binomial-1 regression model (NBR-1) and negative binomial-2 regression model (NBR-2), have been applied. Another parameterization of NBR is negative binomial-P regression mode...

متن کامل

Derailment Probability Analyses and Modeling of Mainline Freight Trains

We conducted statistical analyses and used modeling techniques to develop derailment probabilities for freight trains and freight cars operating on North American railroads. Knowing the expected frequency of derailment and the conditional probabilities of derailment for individual cars enables estimation of the derailment risk as it is affected by train length, operating speed, and positioning ...

متن کامل

Parameter Estimation on Zero-Inflated Negative Binomial Regression with Right Truncated Data

A Poisson model typically is assumed for count data, but when there are so many zeroes in the response variable, because of overdispersion, a negative binomial regression is suggested as a count regression instead of Poisson regression. In this paper, a zero-inflated negative binomial regression model with right truncation count data was developed. In this model, we considered a response variab...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Accident; analysis and prevention

دوره 59  شماره 

صفحات  -

تاریخ انتشار 2013